Shoji KAJIGAESHI, * Takaaki KAKINAMI, † Masayuki MORIWAKI, Masakazu WATANABE, †
Shizuo FUJISAKI, and Tsuyoshi OKAMOTO †

Department of Industrial Chemistry, Faculty of Engineering,
Yamaguchi University, Tokiwadai, Ube 755

†Department of Industrial Chemistry, Ube Technical College, Tokiwadai, Ube 755

The reaction of aromatic ethers with benzyltrimethylammonium dichloroiodate(1-) in acetic acid in the presence of zinc chloride at room temperature gave iodo-substituted aromatic ethers in good yields.

Usually, iodo-substituted aromatic ethers (1) have been obtained from the Sandmeyer reaction of alkoxyanilines, 2) and from the O-alkylation of iodophenols with dialkyl sulfate. 3) Otherwise, 1 have been obtained, in only limited cases, from the direct iodination of aromatic ethers (2) by use of a mixture of iodine and appropriate oxidizing agent such as mercuric oxide 4) and hydrogen peroxide / strong mineral acid. 5) A mixture of iodine and silver trifluoroacetate can be also used. 6) Further, iodine monochloride (ICl) have considerably been used as an iodinating agent. 7) In this case, as a source of ICl produced, dichloramine-T with NaI or HI have been employed. 8)

Recently, we found that benzyltrimethylammonium dichloroiodate(1-) (BTMA ICl $_2$) was a highly useful reagent to obtain iodo-substituted phenols 9) and aromatic α -chloroacetyl derivatives. 10) In this paper, we wish to report on a facile synthesis of $\underline{1}$ from $\underline{2}$ by use of BTMA ICl $_2$.

Reaction of 2 with BTMA ICl_2 in AcOH in the presence of $ZnCl_2$ at room temperature gave 1 in good yields. The results are summarized in Table 1.

BTMA ${\rm ICl}_2$ is only slightly soluble in AcOH at room temperature. However, an addition of ${\rm ZnCl}_2$ makes this reagent soluble in AcOH, and the iodination reaction of 2 proceeds smoothly under the mild conditions. The combined effect of BTMA ${\rm ICl}_2$ and ${\rm ZnCl}_2$ in AcOH thus provides a new excellent iodination procedure. Actually, in ${\rm CH}_2{\rm Cl}_2$ -CH $_3{\rm OH}$ which was well-suited solvent for these halogenations using quaternary

796 Chemistry Letters, 1988

Table 1. Iodo Aromatic Ethers($\underline{1}$) from Aromatic Ethers($\underline{2}$) and BTMA ICl $_2$

	Substrate	Molar ratio	Reaction	Product ^a)	Yield ^{b)}	Mp/°C or Bp/°C	
	(2)	(BTMA $ICl_2/2$)	time	(1)	8	found	reported
a	MeO-	1.1	3 h	MeO-O-I	92	53-54	528)
b	EtO-	1.1	2 h	EtO-O-I	97	27-28	27 ⁸)
С	BuO-O	1.1	4 h	BuO-O-I	98	277/760 mmHg	104-106/ ¹¹⁾ 0.5 mmHg
đ	MeO-	1.1	30 min	MeO-O-I	97	77.5-78	75-76 ³⁾
е	MeO	1.0	30 min	MeO-O-I	94	42-44	43-45 12)
f		2.1	24 h	MeO-JI 13	96	102-103.5	-
g	MeO-O-Me	1.1	6 h	MeO-Me Me Me	94	30.5-31	30-31 ⁷)
h	MeO-	1.1	30 min	MeO	96	39-40	32-33 ¹⁴⁾
i	MeO-Me	1.1	8 h		91	255/760 mmHg	-
j	Me MeO- Me	1.1	30 min	Me MeO-VI Me	98	47	46-48 ¹⁶⁾
k	Me MeO- Me	1.1	8 h	Me MeO-I	96	259/760 mmHg	133-135/ ¹⁷⁾ 13 mmHg
1	MeO-Me	1.1	30 min	MeO-Me	92	57-58	57-58 ¹⁸⁾
m	MeO- Me	2.1	1 h	MeO-Me	98	124	1258)
n	MeO MeO	1.0	30 min	MeO-O-I	97	33-34	34-35 ¹⁹⁾
0		2.1	4 h	MeO I	94	132-133.5	1348)
р	MeO-OMe	2.1	10 min	MeO-OMe	98	200-201	198-199 ⁸)
đ	MeO-OMe	2.1	15 h	MeO-OMe	92	171-172	1718)

Chemistry Letters, 1988 797

- a) Structures of known products were also confirmed by their ¹H NMR spectra.
- b) Yield of isolated product.

ammonium polyhalides, the reaction of $\underline{2}$ with BTMA ICl $_{\underline{2}}$ did not proceed at all, even under reflux for many hours. The reaction scheme which affords $\underline{1}$ (monoiodosubstituted ethers) can be presented as follows;

$$PhCH_{2}(CH_{3})_{3}N^{+}ICl_{2}^{-} + ZnCl_{2} - PhCH_{2}(CH_{3})_{3}N^{+}Cl_{3}^{-} + I^{+} + ZnCl_{3}^{-} (1)$$

$$\frac{1}{2} + I^{+} + ZnCl_{3}^{-} - \frac{1}{2} + ZnCl_{2} + HCl$$
 (2)

overall:

We emphasize that the synthetic procedure for the direct iodination of $\underline{2}$ by use of BTMA ICl $_{\underline{2}}$ and ZnCl $_{\underline{2}}$ in AcOH is a useful method owing to its ease, simplicity, mildness of conditions, and good product yields.

As limitation of these methods, the less reactive $\underline{2}$ such as nitroanisoles gave no product. The reactions of 3,5-dimethylmethoxybenzene($\underline{2m}$), 1,3-dimethoxybenzene ($\underline{2p}$), 1,4-dimethoxybenzene ($\underline{2q}$), 1,3-diethoxybenzene ($\underline{2r}$), and 1,3,5-trimethoxybenzene ($\underline{2s}$) with equimolecular amounts of BTMA ICl $_2$ were so vigorous that the mixtures of mono-, and di-iodinated products were obtained, respectively.

The following is a typical procedure for the synthesis of 4-iodomethoxybenzene ($\underline{1a}$): To a solution of methoxybenzene ($\underline{2a}$)(0.50 g, 5.09 mmol) in AcOH (30 ml) were added BTMA ICl $_2$ (1.77 g, 5.10 mmol) and anhydrous ZnCl $_2$ (ca. 1 g). The mixture was stirred for 3 h at room temperature. A yellow color of the solution gradually changed to light brown. To the mixture was added water (20 ml) and then aqueous NaHSO $_3$ (5%, 20 ml). The mixture was extracted with hexane (50 ml x 3). The organic layer was dried with MgSO $_4$, and passed through a short alumina-column. The hexane solution was concentrated in vacuo to give $\underline{1a}$ as colorless crystals; yield 0.99 g.

We wish to thank Dr. Mamoru Nakai and Mr. Katsumasa Harada, Ube Laboratory, Ube Industries, Ltd., for the elemental analysis.

798 Chemistry Letters, 1988

References

- 1) Halogenation Using Quaternary Ammonium Polyhalides XII.
- 2) D. Brennan and A. R. Ubbelohde, J. Chem. Soc., 1956, 3011.
- 3) C. M. Suter and R. D. Schuetz, J. Org. Chem., 16, 1120 (1951).
- 4) L. Jurd, Aust. J. Sci. Res., 2, 246 (1949).
- 5) L. Jurd, Aust. J. Sci. Res., 2, 595 (1949).
- 6) R. N. Haszeldine and A. G. Sharpe, J. Chem. Soc., 1952, 993.
- 7) G. H. Beaven, D. M. Hall, M. S. Lesslie, E. E. Turner, and G. R. Bird., J. Chem. Soc., 1954, 131.
- 8) B. Jones and E. N. Richardson, J. Chem. Soc., 1953, 714.
- 9) S. Kajigaeshi, T. Kakinami, H. Yamasaki, S. Fujisaki, M. Kondo, and T. Okamoto, Chem. Lett., 1987, 2109.
- 10) S. Kajigaeshi, T. Kakinami, M. Moriwaki, K. Maeno, and T. Okamoto, Synthesis, 1988, submitted for publication.
- 11) K. Palåt, A. Sekera, and C. Vrbz, Chem. Listy., <u>51</u>, 563 (1957); Chem. Abstr., 51, 10404 (1957).
- 12) M. Sletzinger and C. R. Dawson, J. Org. Chem., 14, 670 (1949).
- 13) 2,4-Diiodo-5-methyl-methoxybenzene ($\underline{1f}$): mp 102.5-103.5 °C (from aq EtOH (3:1)). 1 H NMR (CDCl $_3$) $_{\delta}$ = 2.33 (3H, s, CH $_3$), 3.78 (3H, s, OCH $_3$), 6.60 (1H, s, 2-H), 8.00 (1H, s, 5-H). Found: C, 25.44; H, 2.04%. Calcd for C $_8$ H $_8$ OI $_2$: C, 25.70; H, 2.16%.
- 14) N. Tsuji, Tetrahedron, 24, 1765 (1968).
- 15) 2-Iodo-4,6-dimethyl-methoxybenzene ($\underline{1i}$): bp 255 °C/760 mmHg. 1 H NMR (CDCl $_3$) $_{\delta}$ = 2.08 (3H, s, 6-CH $_3$), 2.27 (3H, s, 4-CH $_3$), 3.68 (3H, s, OCH $_3$), 6.87 (1H, s, 5-H), 7.10 (1H, s, 3-H). Found: C, 41.47; H, 4.07%. Calcd for C $_9$ H $_{11}$ OI: C, 41.25; H, 4.23%.
- 16) R. L. Cohen and A. J. Sisti, Can. J. Chem., 42, 1389 (1964).
- 17) A. R. Butler and A. P. Sanderson, J. Chem. Soc., Perkin Trans., 2, 1974, 1784.
- 18) W. Carruthers and A. G. Douglas, J. Chem. Soc., 1959, 2813.
- 19) D. E. Janssen and C. V. Wilson, Org. Synth., Coll. Vol. IV, 547.
- 20) 2,4-Diiodo-1,5-diethoxybenzene ($\underline{1r}$): mp 110 °C (from aq EtOH (3:1)). 1 H NMR (CDCl $_3$) $_{\delta}$ = 1.43 (6H, t, J=10 Hz, 2CH $_3$), 4.00 (4H, q, J=10 Hz, 2CH $_2$), 6.25 (1H, s, 6-H), 7.97 (1H, s, 3-H). Found: C, 28.59; H, 2.80%. Calcd for $^{\rm C}_{10}{}^{\rm H}_{12}{}^{\rm O}_{2}{}^{\rm I}_{2}$: C, 28.73; H, 2.89%.
- 21) 2,4-Diiodo-1,3,5-trimethoxybenzene ($\underline{1s}$): mp 133.5 °C (from aq EtOH (3:1)).

 ¹H NMR (CDCl₃) δ = 3.47 (3H, s, 3-OCH₃), 3.85 (6H, s, 1 and 5-OCH₃), 6.16 (1H, s, 6-H). Found: C, 25.58; H, 2.36%. Calcd for $C_9H_{10}O_3I_2$: C, 25.74; H, 2.40%.
- 22) R. Q. Brewster and F. Strain, J. Am. Chem. Soc., $\underline{56}$, 117 (1934).
- 23) D. Matheson and H. McCombie, J. Chem. Soc., 1931, 1103.
- 24) F. B. Dains and F. Eberly, Trans. Kansas Acad. Sci., 36, 114 (1933): Chem. Abstr., 28, 2338 (1934).

(Received January 23, 1988)